

### **Design Considerations for Intervention Studies**

Alison Hinckley, PhD

Epidemiologist, Division of Vector-Borne Diseases

Integrated Tick Management Symposium: Solving America's Tick-Borne Disease Problem Washington, D.C.

May 17, 2016

# What's the objective?

Prevent people from getting sick



### Intervention studies: how do they differ?

#### INTERVENTION EVALUATIONS



- Objectives
- Outcomes
- Approximation of "real-world"

### **Objectives**

Can it kill <u>ticks</u>?

Can it protect people from tickborne disease?

Will it protect people from tickborne disease?

### Can it kill ticks?

- Ticks/Animals
  - Tick density
  - Infectivity rate
- Studies
  - Small lab/field studies
  - Implementation optimized



### Can it protect people?

- Human
  - Ticks crawling/attached
  - Tickborne disease
  - Biomarkers (including seroconversion)
- Studies
  - Sample size larger
  - "high-risk" participants
  - Implementation less-well controlled than tick/animal studies (efficacy → effectiveness)
- Necessary to ensure relevance to public health



### Will it protect people?

- Actions to deliver services
  - Acceptability
  - Feasibility
  - Cost/Coverage
- Studies
  - Factors affecting implementation (e.g., social, political)
  - All types of participants (no exclusions)
  - "Real-world" settings
  - Implementation in non-ideal settings



# The Intervention "Pipeline"



### **Design Considerations**

- Experimental vs. observational
- Control groups
- Single vs. multiple interventions
- Group (cluster) vs. individual
- Sample size and power
- Approximation of "real-world"





| Experimental vs. Observational Studies                                                                |                                                                                       |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Participants randomly assigned to treatments                                                          | Participants NOT randomly assigned to treatments                                      |
| Treatment is the only factor varied                                                                   |                                                                                       |
| Causal claim can be made                                                                              | Causal claim CANNOT be made                                                           |
|                                                                                                       | Claim can ONLY be made about study participants or similar groups                     |
| Good experiments include: random allocation to treatments, control groups, placebos, and use blinding | Good observational studies: acknowledge and account for all potential problems/biases |

# Hierarchy of Study Designs for Assessing the Efficacy of Interventions



- Randomised controlled trial (individual or cluster randomised)
- Randomised cross-over study, step-wedge design, controlled before-and-after study, controlled time series or controlled interrupted time series
- Non-randomised cross-over study, step-wedge design, controlled before-and-after study or controlled interrupted time series

Case-control, cohort or cross-sectional study

- Non-recommended studies randomised controlled time series
  - Studies without a control group or using a historical control group

Non-randomised controlled trial or non-

### **Control Groups**

- Considerations
  - Strive for comparable
  - Make them concurrent
  - Collect data on factors relevant to disease occurrence
  - Recognize potential for selection bias/confounding
- Alternative designs
  - Crossover
  - Randomization



### Single vs. Multiple Interventions

Multiple interventions typically viewed as better, but...

- Environmentally conscious
- Evidence of synergy
- Cost-effective
- Practical



### Cluster vs. Individual



### **Sample Size and Power**

- Be clear about expected effect size (e.g., 50% reduction)
- Small samples will affect the standard error
- Sample must be large enough to minimize probability of Type II error
- Larger samples for cluster studies due to betweencluster variation



## **Approximation of "Real-World"**

- Participant selection
- Location
- Timing
- Cost
- Selection of monitoring sites



### Other considerations

- Blinding (sometimes not possible)
- Adherence to the intervention
- Follow-up periods
- Spillover effects
- Limited resources

### **Summary**

- Common problems/deterrents exist with tickborne disease intervention studies
  - Surrogate endpoints
  - Resource limited
  - Implementation (large-scale) is difficult
- Methodologically stronger study designs exist
- Human outcomes need to match interventions
- Entomologists and epidemiologists need to partner...

# Thank you!

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

